
■ :.,.-•■■.-■■■.■-:; ; . m'mm^

ARPA ORDER NO.: 189-1

iv R-860-ARPA

November 1971

The Data Reconfiguration Service
-An Experiment in Adaptable,

Process/Process Communication
E. F. Harslem and J. F. Heafner

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

SpringfieW, Vn. 22I5J

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

O P G

I JAN »30972 ■ iSSEITiinE u

SANTA MONICA. CA. 90406

B
r\-?}

/:■.■.■'.■-■,■■■::.■

This research is supported by the Advanced Research Projects Agency under
Contract No. DAHC15 67 C 0141. Views or conclusions contained in this study
should not be interpreted as representing the official opinion or policy of Rand
or of ARPA.

■■ ■• -"' ■:■• ■'. ■ r'--?v.-,rr- .-•■■'■■:..:■

DOCUMENT CONTROL DATA

I. ORIGINATING ACT.VITY

Tho Rand Corporation

2a. REPORT SECURITY CLASSIFICATION

JKCLASSIPIED
2b. GROUP

3. REPORT TITLE

THE DATA REOONFIGUE?vTION'SERVICE—AN EXPERIMENT IN ADAPTABLE, ProCESS/PRDCRqs
COMMUNICATION

4. AUTHOR(S) [lost name, first name, initial)

Harslem, E. P., J. p. Heafner

5. REPORT DATE

Noveirber 1973,

7. CONTRACT OR GRANT MO.

DAHC15 67 C 0141

6a. TOTAL NO. OF PAGES

31

6b. NO. OF REFS.

7
8. ORIGINATOR'S REPORT NO.

R-860-ARPA

9a. AVAILABILITY/LIMITATION NOTICES

DDC-A

10. ABSTRACT

t."/;The nationwide AEPA Network, composed of
widely separated computers that vary in
make, model, size, speed, and other hard-
ware and software features, was set up to
examine the intercommunication problems
that arise in resource shaving among dis-
similar, geographically separate systems.
The Data Reconfiguration Service is a Net-
work experiment involving communication
between two autonomous but cooperating
processes with different input/output in-
terfaces. A DRS user defines forms that
specify the desired data transformations
in order for each process to receive data
in an acceptable format. The two processes
then communicate as if they were directly
connected. The DRS, however, monitors
their dialog and performs the user-speci-
fied transformations on data passing be-
tween them. This report describes the
syntax and semantics of forms. Examples
are given of simple representative uses of
the DRS, e.g., field insertion, field de-
letion,, variable lensth string processing,
string length computation, field transposi-
tion, and character packing and unpacking.^--;

9b. SPONSORING AGENCY

Advanced Research Projects Agency

11. KEY WORDS

Advanced Research Projects Agency
Computers
Networks
Information Systems
Computer Programs

■(««^nqpmBHnBffKBaiwiMHK

MMUMaMMMKäa&nSHn&ti^^

ARPA ORDER NO.: 189-1

R-860-ARPA

November 1971

The Data Reconfiguration Service
-An Experiment in Adaptable;

Process/Process Communication
E. F. Harslem and j. F. Heafner

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONK"A, CA 90405

-iii-

PREFACE

e
-> Thte. report describes the Data Reconfiguration Serviceman experi

:::i :t:rte:on the ^Network by - ^ - jxr:
overall nrn ' P^L^-^^the client's and Rand'«
overall program to explore the utilisation nf

cable to Elitär, environments. ^"^ reSOUrCeS aPPl^

ipattnT T? addreSSed ^ the ARPA NetWOrk' and ^ Ra^ - « Partic- ipating node, ig how to economically share het.ro*
sources fhai- heterogeneous computer re-
s urces that are separated geographically. This report describes one
of many avenues for resource sharing that are h -, / deSCrlbe8 °™
particular M,« n . „ ln8 inves"gated. In
particular, the Data Reconfiguration Service is intend f
there are ^holes'1 in ^ ^ J Intended for uae when

holes m standard communications protocols and where com-
pliance with a standard is not desirable.

Wi^&Üsätüna*!*^,^^

-v-

SÜMMARY

The ARPA Network is composed of different host computers at the

installations of various ARPA contractors across the nation. Informa-

tion flow over the Network is governed by user programs at the sites.

One goal of the Network is to fundamentally examine the inter-

communication problems that arise in resource sharing among dissimilar

systems. The Data Reconfiguration Service (DRS) is a Network experiment

directed toward such an examination. The experiment involves communica-

tion between two arbitrary, but cooperating, processes with different

input/output interfaces.

The DRS is applied as follows. A user defines forms that specify

the desired data transformations in order for each process to receive

data in an acceptable format. The two processes then communicate as

if they were directly connected. The DRS. however, monitors their dia-

log and performs the user-specified transformations on data passing
between them.

The DRS gets an input stream from one process, reformats the input

stream according to a form describing the reconfiguration, and emits

the reformatted data as an output stream to the second process. (A form

is associated with each logical, unidirectional message path between the
process pair.)

This report describes the syntax and aemantics of forms. Th^ nota-

tion chosen and the complexity of the language were tailored to our

current network needs.

Examples are given or simple representative uses of the'DRS. viz

field insertion, field deletion, variable length string processing,

string length computation, field transposition, and character packing

and unpacking. -

Preceding page bM

-vil-

ACKNOWLEDGMENTS

This experiment is conducted cooperatively by several ARPA con-

tractors. The authors would like to thank the following persons for

their contributions to this experiment: R. H. Anderson, The Rand Cor-

poration, Santa Monica, California; Vinton Cerf, University of Calif-

ornia, Los Angeles, California; James Madden, University of Illinois,

Urbana, Illinois; Robert Metcalfe, Massachusetts Institute of Technology,

Cambridge, Massachusetts; Arie Shoshani, System Development Corporation,

Santa Monica, California; James White, Univerr-ity of California, Santa

Barbara, California; and David Wood, The Mitre Corporation, McLean,

Virginia.

Preceding page blank

-ix-

CONTENTS

PREFACE Hi

SUMMARY v

ACKNOWLEDGMENTS vii

Section
I. INTRODUCTION 1

The ARPA Network and Goals 1
Examples of Process Interface Disparities 1
The Data Reconfiguration Service (DRS) Approach .. 2

II. OVERVIEW OF THE DATA RECONFIGURATION SERVICE 4
Elements of the Data Reconfiguration Service 4
Network Connections 4
Requests Over the Control Connection 6

III. THE FORM MACHINE 7
Form Machine Syntax 8
Forms , 9
Rules 9
Terms 10
Term Format 1 10
Term Format 2 10
Term Format 3 12
The Application of a Term 12
Restrictions and Interpretations of
Term Functions 13

Term and Rule Sequencing 14

IV. EXAMPLES 16
Field Insertion 16
Deletion 16
Variable Length Records 17
String Length Computation 17
Transposition , „ 18
Character Packing and Unpacking 18

REFERENCES 21

BIBLIOGRAPHY 23

Freceding page blank

■■ ■ ■■-■••■■: ■■■:V: ■;

-1~

:.

-Pute« at geographlcaUy s
J ; ':0rSed °f <,1«—' host

"an<i.rdl2ed colni(uter. d "tea. InterconäictW by snallj

leaSed f'°» '»a co^on carriers ^"L """' 0<"-U"lca"°" "nas
i-S to pass «ossagas a«n8 host' ^ "" —forward dÄ'toh-

»1-. ^Poad, and othar hard„ara and l^"^'" ^ ^ ^ -&.
«Strlbntad and trafßo ronla ■ ^ featUreS- ^^ »«„ort u

fondant »at„ork paths. ^11^ ^^ ^ ^ ^ ^

various ra^ta rasouroas as nro! "° reU">ly aCCeSS "^

"ias. xndivid^i program at C Mta ^ ,,nIqUe hard"are fa^"-
« P^ary ooncarn ara tha „nd COntr01 ^^^ "-

Cerent in tha „arri.ge of 1 '"'«-nnaction problaM

'-Pt has haen Mda to ^rovidT " "^ ^ Sat— »» -

-• - ~. ^zraTrii^rnt s m&—
« Soal is to disoovar and validata t „ ' Sharln6-

-" -sy accaas to ali avaiiahie !&> < ^ ^"^ """""

-ft„ara dissi^iiaritiaa. Äa%#Sh <iePende"t <,f hard''a« a-d
33 eaS"y a"as"h1a as iooaj onas, Kith0 t I "T '"^ ^ »*
»varali Parform„Ca. Anothar .oal i.7 n0tl<:aabla «egradation in

- or programing ianguagas; aoaus ^ Tn fle:!iblllty '" tha

c^:m: ia"8-aa—~ tr:z: tyoffered ^taiy'
Such a natwork has „any „sas of ' are ,'°t ^"^ad.

-hoaa that raadiiy aiiow aJioraLn „/""^ i"teraSt- ^^ -
«"arant syata^s. „„e 8uch

P ^ u C~a"°° -*ods «ng

<"ata ara transnittad to a ra„ota Pr°i7Rro a',ari'W' ln "hich

"har is to sh ZlxlT reS°ltS ^ retU™d- *-
"»tad to „parata on a larga raZ , , "' '^-'"»s are trans-

iarge, remotely located data base.

-ans^sirirdat"" t'Tyta™ "'to aU Shar,in8 ran8e £™ "la
yata™, to program/terminal coupling

-2-

to a remote service. For example, weather modeling programs will run

on the ILLIAC IV, using parameters transmitted from Rand; results will

be returned and reconfigured for graphical display and analysis. Al-

though some of these programs exist today, their Network and graphical

interfaces do not. Several remote job entry systems are now available

on the Network (i.e., UCSB and UCLA), yet minimal changes were made to

those systems, so that their data input/output (I/O) formats differ

considerably. At MIT, the special Evans and Sutherland graphic hard-

ware is offered as a remote service. It is desirable to use this

service from such various kinds of graphics terminals as the IMLAC and

ARDS.

To further amplify the problem of different software interfaces,

many sites will have a minimal host configuration that will restrict

their data reformatting capabilities, but that should not restrict

their access to remote resources requiring different formats.

Examining the currently proposed and existing services, the kinds

of data manipulations most frequently encountered are character set

conversions, prefacing and stripping leaders of messages, packing and

unpacking repeated symbol strings, generating message counters and

flags to be Inserted into the data stream, graphic device code conver-

sions, data field-transposition, and reformatting files.

^This report discusses one recent approach for providing the above

kinds of data transformations in a way that is transparent to the ter-

minals and programs involved.

\ „ • .

■, ■; ■ ... ■

THE DATA RECONFIGURATION SERVICE (DRg) APPROACH .

Application programs require specific I/O data formats that differ

from program to program. One approach recently adopted for providing

resource sharing of disparate programs is to develop specific dialogs

for classes of programs. Each such program must then be retrofitted

with one of the standard dialog interfaces. The DRS exhibits a dif-

ferent view of coupling variegated processes and terminals. The pre-

mise underlying DRS is that the Network should adapt to the Individual

t ' ::

Evans & Sutherland Computer Corporation, 3 Research Road. Salt
Lake City, Ufah 84112.

-3-

program requirements, rather than changing each program to comply with

a standard. This position does not preclude the use of standards that

describe the formats of Network message contents; it is merely an inter-

pretation of a standard as a desirable mode of operation, but not a
necessary one.

In addition to differing program requirements. a format mismatch

occurs when users wish to employ many different kinds of consoles to

attach to a single remote service program. It is likewise desirable to

have the Network adapt to individual console configurations, rather than

requiring unique software packages for each console transformation.

One approach to providing adaptation is for those sites with sub-

stantial computing power to offer a data reconfiguration serviee; this

report describes such a service, the DRSS currently being implemented

at MIT. UCLA. UCSB. and The Rand Corporation. The university of 111-

inols. MITRE, and others will e^eriment with its use.

The envisioned modus opercmdi of the service involves an applica-

tions programmer, who defines f^s that describe data reconfigurations.

The service store3 the forms by name. At a later time (or immediately

thereafter), a user (perhaps a non-programmer) employs the service to

accomplish a particular transfonuatlon of a Network data stream passing

between a using process arid a serving process. He accomplishes this by

calling the form by name and Identifying it with the using and serving
processes. >*''■

The DRS attempts to provide a nctatloh for form definition tailored

to some specifically needed Instances of data reformatting. At the same

time, the DRS keeps the notation and its underlying Implementation within

some utility range that is bounded on the lower end by a notation expres-

sive enough to make the experimental service useful, and on the upper end

by a:notation that is just short of a general-purpose programming language.

!??-?If?ftH5SS?S!r^^!~^TTrir...-..X'^./J'.''.^"r-v*

'.^

II. OVERVIEW OF THE DATA RECONFIGURATION SERVICE

ELEMENTS OF THE DATA RECONFIGURATION SERVICE

An implementation of the DRS includes a module for Network connec-

tion protocols to establish logical message paths between the end

processes that wish to pass data. It also includes a module (the Form

Machine) to accept and apply the definitions of data reconfigurations

(forms). Lastly, a file management module exists for saving and re-

trieving forms.

This section highlights connections and requests. Section III

details the Form Machine language. File storage is not described be-

cause it is transparent to the user and its implementation is different

at each DRS host.

NETWORK CONNECTIONS

There are three kinds of Network connections to the DRS (s^e Fig. 1).

1. The control connection (CC)r between an originating user and

the DRS. It is instigated by the user to define forms and to

request the user connection (UC) and the server connection

(SC), along with the application of form(s) to data passing

between UC and SC.

2. The UC, between a user process and the DRS. It is estab-

lished by the DRS at the request of the originating user.

3. The SC, between the DRS and the serying process. It, too,

is established by the DRS at the request, of the originating

user.

The user process behaves as if it. were connected directly to the

server process, and vice versa. The DRS appears transparent to both

processes; its function is to reconfigure data that pass in each

direction between them into formats amenable to each of their proces-

sing requirements. Because the goal is to adapt the Network to user

and server processes, minimal requirements are imposed on the UC and SC.

■^^itiBtBaam

- , v _ ;

-5-

■

ORIGINATING
USER

■ ^

USER
PRCXESS

CC—a duplex connection
using a standard Network
protocol

DATA
RECONFIGURATION

SERVICE

Simplex or
Duplex
Connections

Fig. 1—DRS Network Connections

 ,

-6-

REQUESTS OVER THE CONTROL CONNECTION

Over a control connection, the dialog is directly between an

originating user and the DRS, where the user defines forms or assigns

predefined forms to connections for reformatting. Messages sent over

a control connection are formatted according to a Network standard.

When an originating user connects to DRS, he supplies an identi-

fier as a qualifier to guarantee uniqueness of his form names. The

user can request the following operations:

1- Accept a form definition;

2. Purge a form definition;

3. List qualified form names;

4. List the source text of a form;

5. Make a simplex or duplex logical connection between a user

and a server process. The connection can be made in several

ways, i.e., with or without a Network standard connection

protocol;

6. Abort a user/server connection.

When a user/server connection is severed either by the processes

themselves or by an abort request, the DRS sends an appropriate return

code to the originating user.

-7-

III. THE FORM MACHINE . .

I/O STREAMS AND FORMS

This section describes the syntax and semantics of forms that

specify the data reconfigurations. The Form Machine receives an input

stream, reformats it according to a form describing the reconfiguration,

and emits the reformatted data as an output stream.

It is helpful to envision the application of a form to the data

stream, as depicted in Fig. 2., An input stream pointer identifies the

position of data (in the input stream) being analyzed, at any given

time, by a part of the form. Likewise, an output stream pointer lo-

cates datfi emitted in the output stream.

. ■

: .

AA

INPUT
STREAM

lyvi

CURRENT!
POINTER 1

tA
FORM

CURRENT PART OF

FORM BEING APPLIED
{CURRENT.
I POINTER

m

OUTPUT
STREAM

Fig. 2—Application of Form to Data Streams

111—»^ I«I anmui*aais&aeMSBBam —;— ,

-8-

■ ■

■

FORM MACHINE SYNTAX

form j

rule :

terms :

term .

descriptor

...

■

comparator

connective

replicationexpr

datatype

concatexpr

value

■

arithmeticexpr

operator

primary

literal

literaltype

options

sfur

identifier

r I00
iruleli

i i 1

{INTEGER}o {terms}o {:terms}o ;

term {.termlo.

identifier | {identifier}o descriptor | comparator

({replicationexpr}o , datatype , {concatexpr}o ,

i ,1.1
iarithmeticexpr}o {:options}o)

(concatexpr connective concatexpr {:options}o) j

(identifier •<=• concatexpr {:options}o)

•LE. | .LT. | .GE. | ,GT. | .EQ. | .NE.

// | arithmeticexpr

B | 0 j X | E | A | ED | AD | SB | T(identifier)

value| {|| value}"

literal | arithmeticexpr

primary {operator primary}"

+ I." I * I /
identifier | L(identifier) |

V(identifier) | INTEGER

2 5 ß
literaltype "{CHARACTER} o "

B | 0 | X | A | E | ED | AD | SB

,sfur (arithmeticexpr) |

sfur (arithmeticexpr) , sfur (arithmeticexpr)

S | F | U | SR | FR | UR

:= ALPHABETIC {ALPHAMERIC}o

These syntactic statements are referred to in the followine
semantic descriptions. ,

-9-

FORMS

A form is an ordered set of rules.

form ::= {rule}i

The current rule is applied to the current position of the input

stream. If the rule fails to correctly describe the current input,

then another rule is made current and applied to the input stream.^

The next rule to be made current is either explicitly specified by the

current term in the current rule or it is the next sequential rule by

default.

If the current input stream is correctly described, then some

data may be emitted at the current position in the output stream

according to the rule. The input and output stream pointers are ad-

vanced over the described and emitted data, respectively; the next

rule is applied to the now current position of the input stream.

Application of the form is terminated when an explicit return,

e.g., UR (arithmetic expression) is encountered in a rule. The user

and server connections are closed and the evaluated return code (arith-

metic expression) is sent to the originating user.

RULES

A rule is a replacement, comparison, and/or an assignment opera-

tion of the form shown below.

i i i
rule ::= {INTEGER^ {terms}o {:terms}o ;

The optional integer (rule name) exists so:that the rule may be

referenced elsewhere in the.form for explicit rule transfer of control.

Integers are in the range 0 ^ INTEGER ^ 9999. Rules need not be named

in ascending numerical order.

t
If only a part of the rule succeeds, the input pointer is not

advanced.

■■ ' ■ ■ --.: '■■-■• ■ ■■

-10-

TERMS

The input stream is described by zero or more terms,

A

{terms}o

and the output stream is described by zero or more terms.

where

i '
{;terms}o

■ .

,

■ ■

terms ::= term {,term}T .

Terms are expressed in one of the formats indicated below.

term ::= identifier | {identifier}! descriptor | comparator

Term Format 1 ■ .

The first term format, identifier, is a symbolic reference to a

previously identified term (term format 2. below) in the form. It takes

on the same attributes (replication, type, value, length) as the term

by that name and is normally used to emit data.

Term Format 2

The second term format, {identifier}! descriptor, is used f,o collect

input or to emit output.

descriptor ::= ({replicationexpr}! , datatype , {concatexpr}! ,

, i ' i:' ' ■ '''

{arithmeticexpr}o {:options}o)

The above five descriptor elemente1" correspond to the attributes re-

plication, data type, value, length, and transfer of control, respectively.

See the IBM System Reference Library Form C28-6514 for a similar
interpretation of the pseudo instruction. Define Constant, after which
the descriptor was modeled.

-11-

The replicationexpr, if specified, causes the unit value of the

term to be repeated the number of times indicated by the replication

expression's value. The unit value of the term (quantity to be repli-

cated) is datermined from the composite of data type, value expression,

and length expression attributes. The data type defines the kind of

data being specified. The value expression specifies a nominal value

that is augmented by the other term attributes. The length expression

determines the unit length of the term.

The terminal symbol // in a replication expression means an arbi-

trary replication factor. It is explicitly terminated by a non-match

to the input stream. Termination may result from exceeding the 256-

character limit.

A null replication expression has a default value of one. Arith-

metic expressions are evaluated from left-to-right with no precedence.

The L(identifier) is a length operator that generates a 32-bit

binary integer corresponding to the length of the term named. The

V(identifier) is a value operator that generates a 32-bit binary inte-

ger corresponding to the value of the tern named. The T(identlfler) is

a type operator that generates a type-code for the term named.

The data type describes the kind of data that the term represents.+

Data Type Meaning Unit Length

B Bit string 1 bit
0 Bit string 3 bits
X Bit string 4 bits
£ EBCDIC character 8 bits
A Network ASCII character 8 bits
AD ASCII encoded decimal 8 bits
ED EBCDIC encoded decimal 8 bits
SB Signed binary 1 bit

The value expression is the nominal value of a term expressed in

the format indicated by the data type. It is repeated according to the

It is expected that such additional data types as floating-point
and user-defined fcvpes will be added as needed.

-12-

replication expression. A null value expression in an input term

defaults to the data present in the input stream and generates padding

in the output stream according to the restrictions and interpretations

stated later. The input data must comply with the data type attribute,

however.

The length expression states the length of the field containing

the nominal value. If the length expression is less than or equal to

zero, the term succeeds, but the appropriate stream pointer is not ad-

vanced. Positive lengths causo the appropriate stream pointer to be

advanced if the term otherwise succeeds.

Options is defined under Term and Rule Sequencing.

Term Format 3

The third term format is used for assignment and comparison.

comparator ::= (concatexpr connective concatexpr {:options}o) |

(identifier •<=•• concatexpr {:options}o)

The assignment operator •<=• assigns the value to the identifier.

The connectives have their usual meanings. Values to be compared must

have the same type and length attributes or an error condition arises

and the form fails.

The Application of a Term

The elements of a term are applied by the following sequence of

steps,

1. The data type (datatype), value expression (concatexpr), and

length expression (arlthmeticexpr) together specify a unit

value, x.

2. The replication expression (replicationexpr) specifies the

number of times x is to be repeated. The value of the con-

catenated x's becomes y of length L.

3. If the term is an input stream term, then the value of y of

length L is tested with the input value beginning at the

current input pointer position.

inmiiiimiinmiiiiiiimi i jj

-13-

If the Input value satisfies the constraints of y over length

L, then the input value of length L becomes the value of the

term

In an output stream term, the procedure is the same, except that

the source of input is the value of the term(s) named in the value ex-

pression and the data is emitted in the output stream.

The above procedure is modified to include a one-term look-ahead

where replicated values are of indefinite length because of the arbi-
trary symbol #.

Restrictions and Interpretations of Tern. Fünctlohg

1. Terms having indefinite lengths because their values are re-

peated according to the // symbol, must be separated by some

type-specific data, such as a literal.+

2. Truncation and padding include:

a. Character-to-character (A ^ E) conversion, which is left-

justified and truncated or padded on the right with blanks;

b. Character-to-numeric and numeric-to-numeric conversions,

which are right-justified and truncated or padded on the

left with zeros;

c Numeric-to-character conversion, which is right-justified

and left-padded with blanks.

3. The following are ignored in a form definition over the con-

trol connection.

a. Control characters.

b. Blanks, except within quotes.

c /* string */ is treated as comments, except within quotes.

4. The following defaults prevail where one of the fields in a

term is omitted.

a. The replication expression defaults to one.

b. # in an output stream term defaults to one.

numbe/ofl^T tt not*V*cifi^y required, however. An arbitrary
number of ASCII characters could be terminated by a non-ASCII character.

i ■,■■.

-14-

c The value expression of an Input stream term defaults to

the value found in the input stream, but the input stream

must conform to data type and length expression. The

value expression of an output stream term defaults to

padding only.

d. The length expression defaults to the size of the quantity

determined by the data type and value expression.

e. Control defaults to the next sequential term, if a term is

successfully applied; otherwise, control defaults to the

next sequential rule.

5. Arithmetic expressions are evaluated left-to-rlght with no

precedence.

6. The following limits prevail;

a. Binary lengths are s: 32 bits.

b. Character strings are * 256 8-bit characters,

c Identifier names areü 4 characters.

d. Maximum number of identifiers Is ^ 256.

e. Label Integers are ^ 0 and £ 9999.

7. Value and length operators produce 32-bit binary Integers.

The value operator is currently intended^for converting A or

E type decimal character strings to their binary correspondants.

For example, the value of E«12' would be 0......01100. The

value of E'AB1 would cause the form to fall.

TERM AND RULE SEQUENCING

Rule sequencing may be explicitly controlled by using

■ 1

{:options}o ,

defined as

options ::= 8fur(arithmetlcexpr) | \

sfur(arithmeticexpr) , sfur(arithmetlcexpr)

sfur ::= s I F | U | SR | FR | UR

-15-

respectively. The arithmetic expression evaluates to an Integer;

thus, transfer can be effected from within a rule (at the end of a

term) to the beginning of another rule. R means terminate the form

and return the evaluated expression to the initiator over the control

connection.

If terms are not explicitly sequenced, the following defaults

prevail:

1. When a term falls, go to the next seq^nUal rule.

2. When a term succeeds, go to the next sequential term within

the rule.

3. At the end of a rule, go to the next sequential rule.

In the following example, note the correlation between transfer

of control and movement of the input pointer.

1 XYZ(,B,,8:S(2),F(3)) : XYZ ;

2 . . v . ;,. .

• • • • ■

The value of XYZ is never emitted in the output" s'treätbecause

control is transferred out of the rule upon eitlierSuccess or failure.

If the term succeeds, the 8 bits of input are assigned as the value

of XYZ and rule 2 is then applied to the same input stream data. That

is, because the complete left hand side of rule 1 was not successfully

applied, the input stream pointer is not advanced.

-16-

IV. EXAMPLES

• ■ , .

The following examples (forms and also single rules) are simple

representative uses of the Form Machine.

FIELD INSERTION

To insert a field, separate the input into the two terms to allow

the inserted field between them. For example, if the input stream con-

tains pairs of numbers encoded as ASCII, separated by a slash (i.e

123/456/...). the following form labels them as x. y pairs separated

by a line feed, and a carriage return (i.e.. X=123/Y=456 @ @...).

1 XVAL (#.A..l). (.A.A'V.D.YVAL (#.A, ,1). (.A.A"/".!) : ;

/*pick up the x as XVAL and y as YVAL */

2 : (,A,A"X=",2),XVAL,(,A,'7Y-",3),YVAL ;

/*emit the labels followed by the values of x. y */

3 : (.X.^'OAOD" .4: U(l)) ;

/*emit the line feed, carriage return and loop back for the

next pair */

DELETION

Data to be deleted should be isolated as separate terms on the

left in order to be omitted (by not emitting them) on the right.

(.B,,8),

SAVE(,A,,10)

!(,E.SAVE.);

/*isolate 8 bits to ignore*/

/*extract 10 ASCII characters from

input stream*/

/*emit the characters in SAVE as

EBCDIC characters whose length

defaults to the length of SAVE

(i.e., 10), and advance to the

next rule*/

""^f—W^awnWCBMW«!

(■ ■

limsUL::.

-17-

In the above eXample. lf either Input strean. term falls, the next
sequential rule Is applied.

VARIABLE LENRTH vvrnpnc

Sone davits, teMl„als. and p„grai,8 8enerate variable

and translates them to ASCII.

CHAR(M..l). /^ up all (an ^^^ ^^ ^^

legal EBCDIC characters In th- Input
stream*/

■ '

(,X.X"FF",2) /*follOWed by a hexadecimal literal.

FF (terminal signal)*/

:(,A.CHAR.). /*emit th^ a8 ^j.^

(.X,X"0D",2); /*emit an Ascn carriage returnV

STRING LENGTH COMPüTATTnw

It is often necessary to prefix a length field to an arbitrarily

long character string. The following rule prefixes an EBCDIC string
with a one-byte length field.

Q(#.E,.i), /*pick up all legal EBCDIC charactersik/

TB(.X.X'.FF".2) /AfoUowed by a hexadeclmal literai> FFV

= (.B.L(Q)+2.8). /*emlt the length of ^ ^^ ^

the length of the literal plus the length

of the count field itself, in an 8-bit
field*/

*/emlt the characters */

/emit the terminal/
TS;

-IS-

TRANSPOSITION

.It is often desirable to reorder fields, such as the following
example.

Q(.E..20). R(.E..10) . S(.E.,15). T(.E..5) : R. T. S. Q;
■

The terms are emitted in a different order.

CHARACTER PACKING AND UNPACKING

In systems such as HASP, repeated sequences of characters are

packed into a count followed by the character for more efficient

storage and transmission. Tte first form packs multiple characters
and the second unpacks them. " "

/*form to pack EBCDIC streams*/

/*returns 99 If OK. input exhausted*/

/*look for terminal signal FF which is not a legal EBCDIC*/

/*duplitatioii tbunt must be 0-254*/

1 (W-FF"^ : SR(99)) ;

/*pick up an EBCDIC char/*

CHARGE, .1) ;

/*get identical EBCDIC chars/*

LENOM.CHAR.l)

/*emit the count and the char/*

s (SB,L(LEN)+1,8), CHAR, (:U(1));

/*end of form*/

■■IM« iiiiirnBiiBUBiuuiiimBWagaSteaaMaBa

-19-

/*form to unpack EBCDIC streams*/

/*look for terminal*/

1 (.,X,X,,FF,,,2 : SR(:99)) ;

/*emit character the number of times indicated*/

/*by the count, in a field the length indicated*/

/*by the counter contents*/

CNT(,B,,8), CHAR(,E,,1) : (CNT,E,CHAR,1:U(1));

/*failure of form*/

(:UR(98))

-i

-21-

REFERENCES

1. Roberts, L. G., and B. D. Wessler, "Computer Network Development
to Achieve Resource Sharing," AFIPS Conference Proaeedinget Vol.
36, 1970, pp. 5A3-549.

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and
D. C. Waiden, "The Interface Message Processor for the ARPA
Computer Network," AFIPS Conference Proceedings, Vol. 36, 1970,
pp. 551-567.

3. Kleinrock, L., "Analytic and Simulation Methods in Computer Network
Design," AFIPS Conference Proceedings, Vol. 36, 1970, pp. 569-579.

4. Frank, H., I. T. Frisch, and W. Chou, "Topological Considerations
in the Design of the ARPA Computer Network," AFIPS Conference
Proaeedinge, Vol. 36, 1970, pp. 581-587.

5. Carr, C. S., S. D. Crocker, and V. G. Cerf, "HOST-HOST Communica-
tion Protocol in the ARPA Network," AFIPS Conference Proceedings,
Vol. 36, 1970, pp. 589-597.

6. Interface Message Processor: Operating Manual, Bolt, Beranek and
Newman, Inc., Report No. 1877, February 1970.

7. Interface Message Processor: Specifications for the Interconnec-
tion of a HOST and an IMP, Bolt, Beranek and Newman, Inc.,
Report No. 1822, October 1970.

Preceding page blank

a^sviXKt^s&&^ä»a^3SWisimr~^i^m9it^i

•22-

BIBLIOGRAPHY

Baran, P., "On Distributed Conmunicatlon Networks," IEEE TrcmeaotionB
on Communication Syateme, Vol. CS-12, March 1964.

Marill, T., and L. 6. Roberts, "Toward a Cooperative Network of Time-
Shared Computers," AFIPS Conference Proceedings, Vol. 29. 1966.
pp. 425-431.

■ ■ .

. ■ .

■

—-T-r-rr-™'

